
11

l′µCM =
1

2

















(

1 − sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1 − sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

















. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|$Pa,CM |

Ma
, |$SaT,CM | cosφa,CM , |$SaT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|$Pb,CM |

Mb
, |$SbT,CM | cosφb,CM , |$SbT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components $SaT,CM , $SbT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +($SaT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=

α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.


